JOURNAL OF APPROXIMATION THEORY 6, 1-5 (1972)

On a Property of The Coincidence Function
Associated with The Logarithmic Derivative of a Polynomial*

ZALMAN RUBINSTEIN

Department of Mathematics, Clark University, Worcester, Massachusetts 01610

Communicated by Oved Shisha

DEDICATED TO PROFESSOR J. L. WALSH ON THE OCCASION OF HIS 75TH BIRTHDAY

A new property of the coincidence function B(z) is indicated. This property
is applied to strengthen the well-known theorem on the polar derivative of a
polynomial and also to obtain a result about the location of the zeros of a linear
combination of a polynomial and its derivative.

Throughout this note, D(a, r) will denote the closed disk with radius r
about the point a.

It is well known that if P(z) is a polynomial of degree » whose zeros
B: (i = 1, 2,..., n) lie in the closed unit disk, then for any z lying in the exterior
of that closed disk, the logarithmic derivative

Pz & 1
P(z) L7 B )

i=1

L(z) =

can be written in a simplified form

n /
L(Z):E—:-E(z_)’ 1)

obtained by letting all the B; equal to 8 = B(z). Numerous results in the
geometry of polynomials depend heavily on the properties of the function
B(z) (e-g., | B(2)| < 1).

It is our intention to prove an additional property of the function B(z)
under the hypothesis that some B; lies on the unit circumference. For sim-
plicity we shall assume that this 8; is 1 and that its multiplicity is k. By a
simple transformation one can use our result for the general case, where the
restrictions of the last two sentences are not imposed.
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Our proof makes use of a result of G. Julia, in a slightly generalized form
due to J. Wolff and C. Carathéodory (see e.g. [1], Sections 89-93). Namely,

Let f(z) be holomorphic, with | f(z)| < 1, inthedisk |z | < 1, and suppose

that there exists a sequence z, , 2, ,... such that

lim z, = 1, iirgf(z,,) =1

n->w

and such that

lim 1 — |f(2n)1 —
n-»w 1 —_ |an
exists and is finite. Then
lim 1 - /&) = lim I =Je — lim I — f(x) -
o1m 1 —x 1= 1 —x ol 1 — x

and

1 —f@F |1 -z}
T=T/@E STz

for every z, | z | < 1.
We now state and prove our

THEOREM. Let P(z) be a polynomial of degree n(= 2) of the form

Pz)=(z — 1)) Q(z) (1 <k <n,
n-—k

02) =[] z— ), 1ol <1, o +#L
i=1

Let L(z) and B(z) be defined by (1) and (1'). Then

@)

€)

4)

)

@ Ifze D(1/(1 —¢), c/(1 —¢)),0 <c <1, 0r if z¢ D(1/(1 —¢), ¢/(c— 1)),

¢ > 1, then

k n—ke \
B(Z)GD(kJr(n—k)c ’ k+(n~k)c)’

(b) If Rez > 1, then
k k)

BTN T
n’ n

B(z)eD(

Conclusions (a) and (b) may be conveniently summarized as follows:
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@) If ze DAJ(1 + ¢), ¢/(1 + c)), then

(n — k)
B(%)ED(kJr(nk—k)c ’ k—:(n—l(c:)c)’

for any positive number c.

Proof. By (1), (1') and (5), we have

_k Q=) Kk n—k n
L(Z)_z-—l T 0z z—1 +Z—04(Z)_Z_I3(Z)’

for | z| > 1, where a(z) and S(z) are holomorphic and of modulus less than
one in the exterior of the closed unit disk.

Denoting a*(z) = «(1/z), B*(z) = B(1/z), we can rewrite the last equality
in the form

1 1 k n—k n
_z_L (7) 11—z T 1 — za*(2) = zB*(2) ©)
for | z | < 1, where
w0 O)z)
o (Z) - z (n k) Qt(l/z) . (7)

It follows by (6) that

1 n(l — 2)(1 — za*(2))
* [ —_
@) = z [1 n— kza*(z) — (n — k) z ] ®)
Applying (7) and (8) it is not difficult to show that B*(z) satisfies the con-
ditions of Julia’s theorem. Indeed, by (7) and the well-known Gauss-Lucas
theorem on the location of the zeros of the derivative of a polynomial, it
follows that o*(z) is analytic at the point z = 1 and o*(1) 5 1. Since
[ B(z)| < 1for|z| <1, conditions (2) and (3) will be proved if we can show
that
_ A%
lim }__E..E). =
x-1~ 1 —x

exists and is finite. To evaluate this limit, set y = 1 — x and expand the
numerator and the denominator in Taylor series about 0. A straightforward
calculation leads to the value
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Applying inequality (4), we have

|1 — B*(@) n 11—z?

Ao M~ .
1—|B*(z)]2\(k 1) 1—|z2"° ©)
Now, for arbitrary ¢ > 0, the locus of points z in the complex plane
satisfying the inequality | 1 — z |2 << ¢(l — | z |?) is exactly the set

DA/l + ¢), ¢/(1 + ¢)). Thus, one obtains from (9) the assertion (a’) of
the theorem which is equivalent to (a) and (b).

Observe that each of the disks of (a’) of our theorem lies in the closed unit
disk, contains L, and increases from this single point to D(0, 1) as ¢ — co.
Here are two simple applications of the theorem:

ExampLE 1. Consider the equation
P(z) —aP'(z) =0 (10)

where a is a constant and P(z) is as in (5). Obviously every point in the closed
unit disk is a possible root of Eq. (10). If, however, {, | { | > 1, is a root of
(10), then (1) and (1') imply that

{— B = na.

It follows by our theorem that if

1P e Tieh
then

k n—FKkc
L~MED(k+%n—@c’k+%n—Mc)
We have, therefore, the following result:

Every root of Eq. (10) which lies exterior to the closed unit disk must also lie
in the disk

k (n—k)c, )

D@”+k+m—mq’k+m—m%

where ¢, is the smallest positive number such that

JZED(I%I—CO’ l—t’co)'

Of course, one can also give ¢, explicitly if £ is known.
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ExaMPLE 2. Consider the polar derivative Py(z) of the polynomial
P(z) of (5) (see [2, 111, Section 13]), defined by

Py(z) = nP(2) + ({ — 2) P'(2).

A fundamental property of P,(z) can be expressed as follows: If all the
zeros of P(z) lie in a circular region C (closed interior or exterior of a circle or
closed half-plane) and if Z is a zero of Py(z), then not both points Z and { may
lie outside C. Clearly, if Z is a zero of P,(z) which lies exterior to the closed
unit disk, then Z is also a root of the equation

P'(2)/P(z) = nf(z — ).

Therefore, by our theorem, we also have that { = B(Z). We thus have the
following generalization of the above fundamental property of polar deriva-
tives:

Let Z be a zero of the polar derivative P,(z) of P(z) which lies exterior to the
closed unit disk. Let ¢, > 0 be the smallest number such that

ED(Liq’liqy

1
Z

Then the “pole” { of Py(z) lies in the disk

D( k (n—kc )

kKt tn—Kkoec k+0n—FKe

Remarks. (a) Since the zeros of Py(z) are invariant under a general linear
transformation, the last statement can be modified so as to hold for other
circular regions as well.

(b) Further applications of our theorem will be published elsewhere.
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